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2.5.2 Offset Binary representation (Excess-K) • Offset Binary is where one subtracts K (usually half the 

largest possible number) from the representation to get the value. 

• Has the advantage that the number sequence from the most negative to the most positive is a 

simple binary progression, which makes it a natural for binary counters. 

• note that the MSB still carries the sign information. 

• Excess K is used in conjunction with floating point representations for the exponent. We will meet 

this again shortly. • A note on arithmetic in Excess K: 

Assume a, b, c are three values: 

 (a + b) = c (values) 

 (a + k) + (b + k) (representations) 

= (a + b) + 2k 

= (c + k) + k 

Rewriting A, B, C in Excess-K representations: 

A + B = C + k 

C = (A + B) − k 

• Try this for (-1) + (+1) = 0 

2.5.3 2’s complement 

• 2’s complement represents the method most widely used for integer computation. 

• Positive numbers are represented in simple unsigned binary. 

• The system is rigged so that a negative number is represented as the binary number that when 

added to a positive number of the same magnitude gives zero. 

• To get the two’s complement, first take the ones complement, then add one. 



 

2.5.4 1’s complement 

• Exchange all the 1’s for 0’s and vice versa. 

 value 1’s complement 2’s complement 

+7 0111 0111 

+6 0110 0110 

+5 0101 0101 

+4 0100 0100 

+3 0011 0011 

+2 0010 0010 

+1 0001 0001 

0 0000 0000 

-1 1110 1111 

-2 1101 1110 

-3 1100 1101 

-4 1011 1100 

-5 1010 1011 

-6 1001 1010 

-7 1000 1001 

-8 - 1000 

-0 1111 - 

Binary Value 1’s-Complement 2’s-complement 

0000 0 0 

0001 1 1 

0010 2 2 

0011 3 3 

0100 4 4 

0101 5 5 

0110 6 6 

0111 7 7 

1000 -7 -8 

1001 -6 -7 

1010 -5 -6 

1011 -4 -5 

1100 -3 -4 

1101 -2 -3 

1110 -1 -2 

1111 -0 -1 
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2.6 Performing Arithmetic 

2.6.1 In 1’s complement 

Some examples of arithmetic with 1’s complement. 

Example 2.6.1 (addition) 

0011 (+3) 

+0010 (+2) 

0101 (+5) 

Example 2.6.2 (subtraction) 

 0011 (+3) 

 +1101 (-2) 

 (1)0000 (0?) 

Example 2.6.3 (subtraction from a negative) 

 1100 (-3) 

 +1101 (-2) 

 (1)1001 (-6?) 

The solution is to wrap the carry back in to the LSB. 

Exercise 2.6.4 Can you explain why this works? 

2.6.2 In 2’s complement 

The Arithmetic operations are perhaps easiest in 2’s complement. 



 

• To add ... just like in any other base. 

Example 2.6.5 (addition 5 + (-2):) 

 0101 (+5) 

 +1110 (-2) 

 0011 (+3) 

• To subtract B from A take the 2’s complement of B and add to A. 

Example 2.6.6 (subtraction 2 - 5:) 

 0010 (+2) (2 + (-5)) 

 +1011 (-5) since +5 = 0101: 

 1101 (-3) 

 

value Sign Offset 2’s 

 Magnitude Binary complement 

+7 0111 1111 0111 

+6 0110 1110 0110 

+5 0101 1101 0101 

+4 0100 1100 0100 

+3 0011 1011 0011 

+2 0010 1010 0010 

+1 0001 1001 0001 

0 0000 1000 0000 

-1 1001 0111 1111 

-2 1010 0110 1110 

-3 1011 0101 1101 

-4 1100 0100 1100 

-5 1101 0011 1011 

-6 1110 0010 1010 

-7 1111 0001 1001 

-8 - 0000 1000 

-0 1000 - - 
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Binary Value Sign Magnitude Offset Binary 2’s complement 

0000 0 -8 

 

0 

0001 1 -7 1 

0010 2 -6 2 

0011 3 -5 3 

0100 4 -4 4 

0101 5 -3 5 

0110 6 -2 6 

0111 7 -1 7 

1000 -0 0 -8 

1001 -1 1 -7 

1010 -2 2 -6 

1011 -3 3 -5 

1100 -4 4 -4 

1101 -5 5 -3 

1110 -6 6 -2 

1111 -7 7 -1 

 

 

• Multiplication also works right in 2’s complement. Long multiplication reduces to shifts and adds 

• We have implicitly used the concept of carry. In particular we dropped/ignored the carry bit in the 

case of the two’s complement number representation. 

 

Example 2.6.7 (3 – 3 =) 

 0011 ( 3) 

 +1101 (–3) 

 (1) 0000 (0) 

(c.f. above 1’s complement 

example) 

 
• It should be clear that for the unsigned binary the carry has relevance. 



 

Example 2.6.8 (3 + 13 =) 

 0011 ( 3) 

) 

 

• We can also perform subtraction directly and still ignore the carry/borrow bit. 

Example 2.6.9 (2’s complement borrow) 

 0011 (3) 

 –0100 (–4) 

 
 (1) 1111 (–1) 

 

• However, for subtraction with the unsigned binary the borrow is important, particularly in multiple 

word operations. 

Example 2.6.10 (multiple word addition/carry) 

0011 0011 (51) 

+000011101 (13) 

0100 0000 (64) 

Example 2.6.11 (multiple subtraction/borrow) 

 0100 0000 (64) 

 –000011101 (–13) 

 0011 0011 (51) 

• These still could represent two’s complement. but low order words must treated as if unsigned. 
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